perm filename ARITH[G,BGB]2 blob
sn#053587 filedate 1973-07-14 generic text, type C, neo UTF8
COMMENT ⊗ VALID 00006 PAGES
C REC PAGE DESCRIPTION
C00001 00001
C00002 00002 TITLE ARITH - ARITHMETIC ROUTINES.
C00005 00003 INTERN SIN,COS
C00007 00004 SUBR(ATAN,X) ARC TANGENT
C00010 00005 SUBR(ATAN2,DY,DX) ARC TANGENT (DELTA-Y,DELTA-X)
C00014 00006 SUBR(REALIN)
C00018 ENDMK
C⊗;
TITLE ARITH - ARITHMETIC ROUTINES.
HALFPI↑: 201622077325 ;PI/2
PI↑: 202622077325 ;PI
TWOPI↑: 203622077325 ;2*PI
SUBR(SQRT,X) ;SQUARE ROOT OF ABS(X).
COMMENT ⊗------------------------------------------------------------
⊗
A←←0 ↔ B←←1 ↔ C←←2
LACM B,X↔JUMPE B,POP1J.↔PUSHP 2
;LET X=F*(2↑2B) WHERE 0.25<F<1.00 THEN SQRT(X)=SQRT(F)*(2↑B).
ASHC B,-=27↔SUBI B,201 ;GET EXPONENT IN B, FRACTION IN C.
ROT B,-1 ;CUT EXP IN HALF, SAVE ODD BIT
DAP B,L↔LSH B,-=35 ;USE THAT ODD BIT.
ASH C,-10↔FSC C,177(B) ;0.25 < FRACTION < 1.00
;LINEAR APPROXIMATION TO SQRT(F).
DAC C,A
FMP C,[0.8125↔0.578125](B)
FAD C,[0.302734↔0.421875](B)
;TWO ITERATIONS OF NEWTON'S METHOD.
LAC B,A
FDV B,C↔FAD C,B↔FSC C,-1
FDV A,C↔FADR A,C
L: FSC A,0↔LAC 1,A↔POPP 2
POP1J
ENDR SQRT; BGB 28 DECEMBER 1972 -------------------------------------
SUBR(LOG,X) ;NATURAL LOGRITHM.
COMMENT ⊗------------------------------------------------------------
⊗
MOVM X↔SKIPE 1,0↔CAMN 0,[1.0]↔POP1J
ASHC 0,-33↔ADDI 0,211000↔MOVSM 0,TMP1#
MOVSI 0,(-128.5)↔FADM 0,TMP1
ASH 1,-10↔TLC 1,200000↔FAD 1,[-0.70710678]
LAC 0,1↔FAD 0,[1.4142135]↔FDV 1,0
DAC 1,TMP2#↔FMP 1,1
LAC 0,[0.59897864]↔FMP 0,1
FAD 0,[0.96147063]↔FMP 0,1
FAD 0,[2.88539120]↔FMP 0,TMP2↔FAD 0,TMP1
FMP 0,[0.69314718]↔LAC 1,0↔POP1J
VAR
ENDR LOG;---------------------------------------------------------
INTERN SIN,COS
BEGIN SINCOS;MODIFIED OLDE LIB40 SINE & COSINE - BGB.
A←←1 ↔ B←←2 ↔ C←←3
↑COS: SKIPA A,ARG1
↑SIN: SKIPA A,ARG1
FADR A,HALFPI ;COS(X) = SIN(X+π/2).
MOVM B,A↔CAMG B,[17B5]↔POP1J ;FOR SMALL X, SIN(X)=X.
;B ← (ABS(X)MODULO 2π)/HALFPI
;C ← QUADRANT 0, 1, 2 OR 3.
FDVR B,HALFPI
LAC C,B↔FIX C,233000
CAILE C,3↔GO[
TRZ C,3↔FSC C,233
FSBR B,C↔GO .-3] ;MODULO 2π.
GO .+1(C)↔GO .+4↔JFCL↔GO[
FSBRI B,(2.0)↔MOVNS B↔GO .+2] ;SIN(X+π)=SIN(-X)
FSBRI B,(4.0) ;SIN(X+2π)=SIN(X)
SKIPGE A↔MOVNS B ;SIN(-X) = -SIN(X).
;FOR -1 ≤ B ≤ +1 REPRESENTING -π/2 ≤ X ≤ +π/2,
;COMPUTE SINE(X) APPROXIMATION BY TAYLOR SERIES.
DAC B,C↔FMPR B,B
LAC A,[164475536722]↔FMP A,B
FAD A,[606315546346]↔FMP A,B
FAD A,[175506321276]↔FMP A,B
FAD A,[577265210372]↔FMP A,B
FAD A,HALFPI↔FMPR A,C↔POP1J
LIT
BEND;-------------------------------------------------------------
SUBR(ATAN,X) ;ARC TANGENT
COMMENT ⊗------------------------------------------------------------
IF 0.0 < X ≤ 1.0 THEN ⊂ Z ← X*X;
RETURN (ATAN(X) = X*(B0+A1/(Z+B1-A2/(Z+B2-A3/(Z+B3)))));⊃;
IF X>1 THEN ATAN(X) = PI/2 - ATAN(1/X);
IF X>1 THEN RH(D) =-1, AND LH(D) = -SGN(X)
IF X<1, THEN RH(D) = 0, AND LH(D) = SGN(X)
⊗
A←←1 ↔ B←←2 ↔ C←←3 ↔ D←←4 ↔ E←←5
LAC A,X ;PICK UP THE ARGUMENT IN A
ATAN1: LACM B, A ;GET ABSF OF ARGUMENT
CAMG B, A1 ;IF X<2↑-33, THEN RETURN WITH...
POP1J ;ATAN(X) = X
HLLO D, A ;SAVE SIGN, SET RH(D) = -1
CAML B, A2 ;IF A>2↑33, THEN RETURN WITH
GO[LAC A,HALFPI ↔POP1J]; ATAN(X) = PI/2
MOVSI C,(<1.0>) ;FORM 1.0 IN C
CAMG B, C ;IS ABSF(X)>1.0?
TRZA D, -1 ;IF B ≤ 1.0, THEN RH(D) = 0
FDVM C, B ;B IS REPLACED BY 1.0/B
TLC D, (D) ;XOR SIGN WITH > 1.0 INDICATOR
DAC B,E↔FMP B,B
LAC C,B↔FAD C,KB3↔LAC A,KA3↔FDVM A,C
FAD C,B↔FAD C,KB2↔LAC A,KA2↔FDVM A,C
FAD C,B↔FAD C,KB1↔LAC A,KA1↔FDV A,C
FAD A,KB0↔FMP A,E
TRNE D, -1 ;CHECK > 1.0 INDICATOR
FSB A, HALFPI ;ATAN(A) = -(ATAN(1/A)-PI/2)
SKIPGE D ;LH(D) = -SGN(B) IF B>1.0
MOVNS A ;NEGATE ANSWER
POP1J ;EXIT
A1: 145000000000 ;2↑-33
A2: 233000000000 ;2↑33
KB0: 176545543401 ;0.1746554388
KB1: 203660615617 ;6.762139240
KB2: 202650373270 ;3.316335425
KB3: 201562663021 ;1.448631538
KA1: 202732621643 ;3.709256262
KA2: 574071125540 ;-7.106760045
KA3: 600360700773 ;-0.2647686202
ENDR ATAN;--------------------------------------------------------
SUBR(ATAN2,DY,DX) ;ARC TANGENT (DELTA-Y,DELTA-X)
COMMENT ⊗------------------------------------------------------------
⊗
; OMEGA ← ATAN2(Y,X).
Y←←1 ↔ X←←2
LACM Y,ARG2↔LACM X,ARG1
CAML Y,X↔GO L1
;HORIZONTAL TO π/2; ABS(Y) < ABS(X).
LAC Y,ARG2↔FDVR Y,ARG1
PUSH 17,Y↔PUSHJ 17,ATAN ;ARCTAN(Y/X)
SKIPL ARG1↔POP2J ;1ST & 2ND QUADRANTS.
JUMPGE Y,[
FSBR Y,PI↔POP2J] ;3RD QUADRANT.
FADR Y,PI↔POP2J ;2ND QUADRANT.
;VERTICAL TO π/2; ABS(X) < ABS(Y).
L1: LACN X,ARG1↔FDVR X,ARG2
PUSH 17,X↔PUSHJ 17,ATAN ;ARCTAN(X/Y)
SKIPG ARG2↔GO[
FSB Y,HALFPI↔POP2J]
FADR Y,HALFPI
POP2J
ENDR ATAN2;----------------------------------------------------------
SUBR(ASIN,X) ;ARC SINE.
COMMENT ⊗------------------------------------------------------------
ASIN(X)=ATAN(X/SQRT(1-X↑2)).
GIVEN -1 ≤ X ≤ +1 RETURN -π/2 ≤ ASIN(X) ≤ +π/2.
⊗
A←1 ↔ B←2
LACN A,X↔FMPR A,X↔FADRI A,(1.0)
JUMPE A,[LAC A,HALFPI ;WAS X EITHER -1.0 OR 1.0?
SKIPGE ARG1↔MOVNS A↔POP1J]
CALL(SQRT,A)
LAC B,X↔FDVR B,1↔DAC B,X ;CALCULATE X/SQRT(1-X↑2)
GO ATAN ;CALCULATE ATAN(SQRT(1-X↑2))
ENDR ASIN;-----------------------------------------------------------
SUBR(ACOS,X) ;ARC COSINE.
COMMENT ⊗------------------------------------------------------------
ACOS(X)= π/2 - ASIN(X).
GIVEN -1 ≤ X ≤ +1 RETURN 0 ≤ ACOS(X) ≤ +π.
⊗
CALL(ASIN,X)
MOVNS 1↔FADR 1,HALFPI
POP1J
ENDR ACOS;--------------------------------------------------------
SUBR(REALIN)
COMMENT ⊗------------------------------------------------------------
<EXPR> ::= <EXPR>+<TERM>|<EXPR>-<TERM>|<TERM>
<TERM> ::= <TERM>*<PRIMARY>|<TERM>/<PRIMARY>|<PRIMARY>
<PRIMARY> ::= -<PRIMARY>|(<EXPR>)|π|<REAL NUMBER>
⊗
CALL(TERM)
CAIN 1,"+"
GO [ PUSH P,0
CALL(TERM)
FADR 0,(P)
SUB P,[XWD 1,1]
GO REALIN+1 ]
CAIN 1,"-"
GO [ PUSH P,0
CALL(TERM)
MOVN 0,0
FADR 0,(P)
SUB P,[XWD 1,1]
GO REALIN+1 ]
CAIN 1,15
CALL(GETCHL)
POP0J
POP0J
TERM: CALL(PRIMARY)
TERM2: CAIN 1,"*"
GO [ PUSH P,0
CALL(PRIMARY)
FMPR 0,(P)
SUB P,[XWD 1,1]
GO TERM2 ]
CAIN 1,"/"
GO [ PUSH P,0
CALL(PRIMARY)
EXCH 0,(P)
FDVR 0,(P)
SUB P,[XWD 1,1]
GO TERM2 ]
POP0J
COMMENT ⊗ Input small real number.
AC-0 INTEGER ACCUMULATION. AC-0 RETURNS REAL NUMBER.
AC-1 CHARACTER. AC-1 RETURNS BREAK CHARACTER.
AC-2 COUNTER OF DIGITS TO RIGHT OF DECIMAL POINT PLUS ONE.
AC-3 MINUS SIGN FLAG.
⊗
EXTERNAL GETCHL
PRIMARY:SETZ↔SETZB 2,3
L0: CALL(GETCHL)
CAIN 1," "↔GO .-2
CAIN 1,"-"↔GO[SETCMM 3↔GO L0]
CAIN 1,"π"↔GO[MOVE 0,PI
GETRET: CALL(GETCHL)↔GO L3]
CAIN 1,"("↔GO[PUSH P,3↔CALL(REALIN)↔POP P,3
CAIN 1,")"↔GO GETRET
OUTSTR[ASCIZ/WARNING: MISSING ')'
/]↔ POP0J]
SKIPA
L1: CALL(GETCHL)
CAIE 1,"."↔GO .+3↔JUMPN 2,L2↔AOJA 2,L1
CAIL 1,"0"↔CAILE 1,"9"↔GO L2
JUMPN 2,[CAILE 2,4↔GO L1↔AOJA 2,.+1]
ANDI 1,17↔IMULI =10↔ADD 1↔GO L1
L2: FLOAT↔SOSLE 2↔FDVR[1.0↔10.0↔100.0↔1000.0↔10000.0](2)
L3: SKIPE 3↔MOVNS↔POP0J
ENDR REALIN;12/16/72(BGB),14-MAR-73(TVR)-----------------------------
END;
ARITH.FAI - EOF.